

Tetrahedron Letters 42 (2001) 5725-5728

TETRAHEDRON LETTERS

Synthesis and stereochemical confirmation of the HI/JK ring system of prymnesins, potent hemolytic and ichthyotoxic glycoside toxins isolated from the red tide alga

Makoto Sasaki,^{a,b,*} Takeshi Shida^a and Kazuo Tachibana^a

^aDepartment of Chemistry, Graduate School of Science, The University of Tokyo, and CREST, Japan Science and Technology Cooperation (JST), Hongo, Bunkyo-ku, Tokyo 113-0033, Japan ^bGraduate School of Life Science, Tohoku University, Aoba-ku, Sendai 981-8555, Japan

Received 28 May 2001; revised 14 June 2001; accepted 15 June 2001

Abstract—Stereocontrolled synthesis of the HI/JK ring model of the prymnesins, glyosidic toxins isolated from the red tide phytoflagellate *Prymnesium parvum*, is described. Comparison of its ¹H and ¹³C NMR data with those of the natural toxins established the earlier stereochemical assignments. © 2001 Elsevier Science Ltd. All rights reserved.

Two glycosidic toxins, prymnesin-1 (PRM1, 1) and prymnesin-2 (PRM2, 2), were isolated from cultured cells of the red tide phytoflagellate Prymnesium parvum.¹ These toxins possess extremely potent hemolytic activity, which is about 5,000-fold greater than that of Merk saponin on a molar basis and also exhibit potent ichthyotoxicity.² Their gross structures and partial stereochemical assignments have been disclosed by Igarashi and Yasumoto.^{3,4} Prymnesins possess unique structural features: an unbranched single chain of 90 carbons except for a single methyl group, a fused polyether ring system (A-E ring), four distinct 1,6-dioxadecalin units, conjugated double and triple bonds, chlorine and nitrogen atoms, and an uncommon L-xylose. The relative stereochemistry of the fused A-E polyether ring domain and four 1,6-dioxadecalin units (rings FG, HI, JK, and LM) was determined by extensive NMR analysis. The diastereomeric relationship among these polyethers was assigned by the extensive NOE and ${}^{3}J_{H,H}$ analysis, indicating that all ring linkages, except for that of rings I/J, took the C-C anti conformation with respect to the C-C linking bond. For rings I/J, an exceptional C-C gauche rotamer was proposed on the basis of NOE analysis; however, force field calculations suggested a C-C anti system as the lowest energy rotamer.⁵ Accordingly, we decided to synthesize the HI/JK ring model to confirm the assigned stereochemistry. We have already demonstrated the utility of a synthetic approach for the configurational assignment of acyclic portions of maitotoxin, the most toxic and largest non-biopolymer.⁶ As part of our studies toward complete stereochemical assignment of prymnesins, we describe herein the stereoselective synthesis of the HI/JK ring model **3**, which culminated in the confirmation of the proposed stereochemical assignment.

Synthesis of the H ring alkyne 9 started with tri-*O*-acetyl-D-glucal (4), which was converted to alcohol 5 in three steps (Scheme 1). An oxidation-reduction sequence allowed inversion of the hydroxyl group to give 6 in 78% yield. Benzylation followed by removal of the acetonide group provided diol 7, which upon regioselective activation and protection by a one-pot procedure⁷ gave triflate 8. Alkylation of 8 with lithium (trimethylsilyl)acetylide was followed by desilylation to give the desired alkyne 9 in 64% overall yield.

Construction of the JK ring lactone **15** is shown in Scheme 2. Routine protective group manipulation allowed conversion of the known alcohol **10**⁸ into alcohol **11**. Inversion of the secondary alcohol followed by deprotection of the primary alcohol and benzylation gave bis-benzyl ether **12** in 98% overall yield. Oxidative cleavage of the double bond provided the corresponding aldehyde, which upon chelation-controlled allylation with allyltributyltin and MgBr₂·OEt₂⁹ yielded

^{*} Corresponding author. Tel.: +81-3-5841-4357; fax: +81-3-5841-8380; e-mail: msasaki@chem.s.u-tokyo.ac.jp

^{0040-4039/01/\$ -} see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)01067-X

homoallylic alcohol 13 in 90% yield along with the undesired diastereomer 14 (7% yield). Protection as its *p*-methoxybenzyl (MPM) ether, desilylation, oxidative cleavage of the terminal olefin and oxidation of the derived hemiacetal with TPAP/NMO¹⁰ furnished the desired lactone 15 in 84% overall yield.

Lithium acetylide generated from **9** was reacted with lactone **15** in THF–HMPA to produce hemiketal **16**. Axial hydride reduction of the C54¹¹ hemiketal (Et₃SiH, BF₃·OEt₂, CH₂Cl₂, -30° C) afforded alkyne **17** in 68% overall yield as a single stereoisomer

Scheme 1. Reagents and conditions: (a) H₂, Pd/C, MeOH, rt; (b) NaOMe, MeOH, rt; (c) Me₂C(OMe)₂, PPTS, DMF, rt, quant. (three steps); (d) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, $-78 \rightarrow 0^{\circ}$ C; (e) L-selectride, THF, -78° C, 78% (two steps); (f) NaH, BnBr, DMF, 0° C \rightarrow rt; (g) *p*-TsOH, MeOH, rt, 83% (two steps); (h) Tf₂O, 2,6-lutidine, CH₂Cl₂, -78° C, then TBSOTf; (i) trimethylsilylacetylene, *n*-BuLi, THF– HMPA, -78° C, 77% (three steps); (j) K₂CO₃, MeOH, rt, quant.

(Scheme 3).¹² Lindlar reduction followed by oxidative removal of the MPM group with DDQ produced alcohol 18. Stereoselective installation of the axial chlorine atom at C56 was achieved by treatment with CCl₄ and Ph₃P.¹³ Dihydroxylation of the *cis*-double bond of 19 with OsO₄ and NMO gave a mixture of diols, which was oxidized under Swern conditions to give diketone 20. Removal of the TBS group with HF pyr led to the exclusive formation of six-membered hemiketal 21 in 53% yield for the two steps. In this transformation, the corresponding five-membered hemiketal was not produced.¹⁴ DIBALH reduction proceeded stereoselectively to yield alcohol 22, which was converted to the corresponding methyl acetal and then subjected to Et_3SiH/BF_3OEt_2 to yield tetracyclic ether 23. Finally, removal of the benzyl groups furnished the targeted HI/JK ring model 3 in 65% overall yield for the four steps. The stereochemistry of 3 was unambiguously established by NOE and ${}^{3}J_{H,H}$ data.15

Examination of the chemical shifts in the ¹H and ¹³C NMR spectra of **3** thus prepared showed that the observed NMR data matched well with those of *N*-acetylprymnesin-1 (NAPRM1) and *N*-acetylprymnesin-2 (NAPRM2). Especially, the ¹H and ¹³C NMR signals of the C51-C56 portion correspond extremely well to those of NAPRM1 and 2 (Table 1). Furthermore, the coupling constants, $J_{53,54}=2.5$ Hz, and NOE data of **3** agreed well with those of NAPRM2 (Fig. 1). Thus, the formerly assigned configuration of the HI/JK ring portion was confirmed to be represented by structure **3**. Also, the present results showed that the I/J-ring juncture adopts an exceptional C–C gauche conformer, although the precise reason is not yet clear.¹⁶

Scheme 2. Reagents and conditions: (a) TIPSOTf, 2,6-lutidine, CH_2Cl_2 , 0°C; (b) CSA, MeOH– CH_2Cl_2 , rt, 84% (two steps); (c) MMTrCl, Et₃N, DMAP, CH_2Cl_2 , rt, quant.; (d) TPAP, NMO, 4 Å molecular sieves, CH_2Cl_2 , rt; (e) L-selectride, THF, -78°C; (f) CSA, MeOH– CH_2Cl_2 , rt, 98% (three steps); (g) NaH, BnBr, DMF, 0°C \rightarrow rt; (h) OsO₄, NMO, acetone–H₂O, rt, 93% (two steps); (i) NaIO₄, THF–H₂O, rt; (j) allyltributyltin, MgBr₂·OEt₂, CH₂Cl₂, -78°C \rightarrow rt, 90% (two steps) [+14, 7% (two steps)]; (k) *t*-BuOK, MPMCl, *n*-Bu₄NI, THF, 0°C \rightarrow rt; (l) *n*-Bu₄NF, THF, rt, 91% (two steps); (m) OsO₄, NMO, THF–H₂O, rt; (n) NaIO₄, THF–H₂O, rt, 93% (two steps); (o) TPAP, NMO, 4 Å molecular sieves, CH₂Cl₂, rt, quant.

Scheme 3. *Reagents and conditions*: (a) 9, *n*-BuLi, THF–HMPA, -78° C, then 15; (b) Et₃SiH, BF₃·OEt₂, CH₂Cl₂, -30° C, 68% (two steps); (c) H₂, Lindlar catalyst, MeOH, rt; (d) DDQ, CH₂Cl₂ pH 7.0 phosphate buffer, rt; (e) PPh₃, CCl₄, reflux; (f) OsO₄, NMO, THF–H₂O, rt, 39% (four steps); (g) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, $-78 \rightarrow 0^{\circ}$ C; (h) HF·pyr, THF, rt, 53% (two steps); (i) DIBALH, CH₂Cl₂, -78° C; (j) *p*-TsOH, MeOH, 60°C; (k) Et₃SiH, BF₃·OEt₂, CH₂Cl₂, 0°C; (l) H₂, Pd(OH)₂/C, MeOH, rt, 65% (four steps).

Table 1. Selected ¹H and ¹³C NMR data of 3, NAPRM1, and NAPRM2^a

No	3		NAPRM1		NAPRM2	
	$\delta_{\rm H}$ (pattern)	$\delta_{ m C}$	$\delta_{\rm H}$ (pattern)	δ_{C}	$\delta_{\rm H}$ (pattern)	$\delta_{\rm C}$
51	1.57 (ddd, 11.3, 11.3, 11.3)	41.5	1.64	41.3	1.60	41.4
51	2.40 (ddd, 11.3, 4.5, 4.5)		2.45		2.42	
52	3.59 (ddd, 11.3, 9.7, 4.5)	68.0	3.63 (dt, 10, 5)	67.5	3.59	67.8
53	3.48 (dd, 9.7, 2.5)	85.7	3.48 (dd, 10, 2.6)	85.2	3.46	85.6
54	4.47 (ddd, 11.4, 2.5, 2.2)	74.2	4.47	73.8	4.43	74.2
55	2.48 (ddd, 14.7, 11.4, 3.1)	35.7	2.46	35.3	2.47	35.8
55	2.03 (ddd, 14.7, 3.1, 2.2)		2.02		2.03	
56	4.51 (ddd, 3.2, 3.1, 3.1)	60.5	4.46	60.3	4.48	60.3

^a The spectra were all measured in CD₃OD-C₅D₅N (1:1).

Acknowledgements

We are grateful for Dr. T. Igarashi, Japan Food Research Laboratories, and Professor M. Satake, Tohoku University, for valuable discussions. This work was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- 1. Igarashi, T.; Satake, M.; Yasumoto, T. J. Am. Chem. Soc. 1996, 118, 479–480.
- 2. Igarashi, T.; Aritake, S.; Yasumoto, T. Nat. Toxins 1998, 6, 35–41.
- Igarashi, T.; Satake, M.; Yasumoto, T. J. Am. Chem. Soc. 1999, 121, 8499–8511.
- 4. Only recently, the absolute configurations at C14 and C85 were determined to be *S*, respectively, see: Morohashi, A.; Satake, M.; Igarashi, T.; Oshima, Y.; Yasumoto, T. *Chirality*, in press. However, the relative configuration of the C74–C85 acyclic part remains unknown.
- 5. Glendenning, L.; Igarashi, T.; Yasumoto, T. Bull. Chem. Soc. Jpn. 1996, 69, 2253–2263.
- (a) Sasaki, M.; Nonomura, T.; Murata, M.; Tachibana, K. Tetrahedron Lett. 1994, 35, 5023–5026; (b) Sasaki, M.; Nonomura, T.; Murata, M.; Tachibana, K. Tetrahedron Lett. 1995, 36, 9007–9010; (c) Sasaki, M.; Matsumori, N.; Murata, M.; Tachibana, K.; Yasumoto, T. Tetrahedron Lett. 1995, 36, 9011–9014; (d) Sasaki, M.; Matsumori, N.; Maruyama, T.; Nonomura, T.; Murata, M.; Tachibana, K.; Yasumoto, T. Angew. Chem. 1996, 108, 1782–1785; (e) Nonomura, T.; Sasaki, M.; Matsumori, N.; Murata, M.; Tachibana, K.; Yasumoto, T. Angew. Chem., Int. Ed. Engl. 1996, 108, 1786–1789; (f) For the

work from Kishi's group, see: Zheng, W.; DeMattei, J. A.; Wu, J.-P.; Duan, J. J.-W.; Cook, L. R.; Oinuma, H.; Kishi, Y. J. Am. Chem. Soc. **1996**, 118, 7946–7968.

- Mori, Y.; Yaegashi, K.; Furukawa, H. J. Am. Chem. Soc. 1996, 118, 8158–8159.
- Fuwa, H.; Sasaki, M.; Tachibana, K. *Tetrahedron* 2001, 57, 3019–3033.
- Charette, A. B.; Mellon, C.; Pouillard, L.; Malenfant, E. Synlett 1993, 81–82.
- Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639–666.
- 11. The numbering of carbon atoms of all compounds in this paper corresponds to that of prymnesins.
- Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976–4978.
- (a) Hooz, J.; Gilani, S. S. H. Can. J. Chem. 1968, 46, 86–87; (b) Appel, R. Angew. Chem., Int. Ed. Engl. 1975, 14, 801–811.
- Preference formation of the six-membered acetal over the five-membered has been reported, see: (a) Fujiwara, K.; Morishita, H.; Saka, K.; Murai, A. *Tetrahedron Lett.* 2000, 41, 507–508; (b) Matsuo, G.; Hinou, H.; Koshino, H.; Suenaga, T.; Nakata, T. *Tetrahedron Lett.* 2000, 41, 903–906; (c) Mori, Y.; Mitsuoka, S.; Furukawa, H. *Tetrahedron Lett.* 2000, 41, 4161–4164.
- 15. Selected data for compound 3: ¹H NMR (500 MHz, $CD_3OD/C_5D_5N = 1:1$): δ 4.51 (1H, ddd, J = 3.2, 3.1, 3.1Hz, 56-H), 4.47 (1H, ddd, J=11.4, 2.5, 2.2 Hz, 54-H), 4.29 (1H, ddd, J=9.4, 9.3, 4.6 Hz, 58-H), 4.14 (1H, m, 48-H), 4.08 (1H, m, 60-H), 3.95 (1H, dd, J=11.4, 6.7 Hz, 62-H), 3.86 (1H, dd, J=11.4, 5.0 Hz, 62-H), 3.81 (1H, ddd, J=11.9, 11.9, 2.4 Hz, 46-H), 3.53-3.67 (4H, 46-H, 50-H, 52-H, 61-H), 3.48 (1H, dd, J=9.7, 2.5 Hz, 53-H), 3.26 (1H, dd, J=9.3, 3.2 Hz, 57-H), 2.98 (1H, dd, J=9.5, 3.2 Hz, 57-H)2.7 Hz, 49-H), 2.48 (1H, ddd, J=14.7, 11.4, 3.1 Hz, 55-H), 2.40 (1H, ddd, J=11.3, 4.5, 4.5 Hz, 51-H), 2.27 (1H, ddd, J=12.7, 4.6, 3.3 Hz, 59-H), 2.03 (1H, ddd, J=14.7, 3.1, 2.2 Hz, 55-H), 1.77 (1H, m, 47-H), 1.72 (1H, m, 47-H), 1.67 (1H, m, 59-H), 1.57 (1H, ddd, J=11.3, 11.3, 11.3 Hz, 51-H); ¹³C NMR (125 MHz, CD₃OD/ $C_5D_5N=1:1$) δ 85.7 (C53), 83.4 (C61), 82.3 (C49), 80.7 (C57), 74.2 (C54), 71.0 (C50), 69.6 (C58), 68.2 (C60), 68.0 (C52), 66.6 (C48), 64.2 (C46), 63.8 (C62), 60.5 (C56), 41.5 (C51), 39.4 (C59), 35.7 (C55), 35.0 (C47); HRMS (FAB) calcd for $C_{17}H_{27}ClNaO_8$ [(M+Na)⁺] m/z 417.1292, found 417.1280.
- 16. In CDCl₃ solution, compound **3** preferentially adopted the C–C *anti* conformation around the C53–C54 linkage $(J_{53,54}=8.5 \text{ Hz})$, presumably due to intramolecular hydrogen bond stabilization between the C52 hydroxyl and the J ring oxygen. Similar conformational properties of the V/W-ring juncture of maitotoxin have been reported, see: Cook, L. R.; Oinuma, H.; Semones, M. A.; Kishi, Y. J. Am. Chem. Soc. **1997**, *119*, 7928–7937.